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A method is given for calculating oblique shocks in a region of
moist vapor, when conditions of phase equilibrium are satisfied in
the shock process,

When superheated vapor arrives in a nozzle, and a
shock wave follows a condensation shock, the moisture
moving in the stream is finely dispersed and has a ve-
locity close to that of the vapor phase. It is natural to
suppose that in the presence of a large number of
vapor-forming centers, the shock wave occurs in con-
ditions of phase equilibrium. This proposition is valid
right up to complete evaporation of the moisture. It
should be noted that such shocks are met compara-
tively frequently. In the shock analysis the following
assumptions are made.

The Clapeyron equation pV = RT is applicable to
the vapor phase. »

The velocity of the moisture drops generated in the
condensation shock is equal to that of the vapor. This
proposition is valid both ahead of the shock wave and
behind it.

In the low pressure region it is assumed that the
saturation temperature and the value of the latent
heat of vaporization do not change in passing through
the shock. For water vapor this condition may be
assumed for static pressures behind the shock of less
than 0.98 « 10° N/m? (p; = 0.98 » 10° N/m?).

Taking these assumptions into account, the basic
equations of gasdynamics may be written in the
following form:

equation of continuity

Mysing, _ x4 Tiop 1)

M,;sinf, xxs Ty, m

where M, = ¢,/V ERT; and M, = ¢/} kRT, are dimen-
sionless flow velocities;

momentum equation components normal to the
shock front

Py = -k—— M;sin By (M; sin B — Mg sin B.); 2)
P X

momentum equation along the shock front
Ml cos Bl = Mz cos BZ; (3)
energy equation, taking into account that ry = ry

io——f};—T’Mfcosﬁl =rx + —/i'l;—Z‘M?sin’ﬂl=

= 2%, + k_’;ﬂ Mgsin’ﬁ,.

The basic equation for calculating an adiabatic
shock is found as follows.

¥rom the first two equations we may obtain (T, =
= Tz)
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The energy equation gives
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or, taking into account momentum equation (2),
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Thus, Eq. (4) is brought to the form
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From the last equation it is easy to calculate the
value of p, /p, for the given flow parameters ahead
of the shock p;,T; and My,B;. For convenience of cal-
culation, Fig. 1 shows a diagram for calculating
shock waves in moist water vapor. Furthermore,
from the momentum equation we have

_h (P 1) ]
EM;sinf, \ py
The degree of dryness of the vapor behind the

shock may be determined from the continuity equa-
tion

M,sin By = My sinf, —

- M,sinB, —’ﬁ—x,
M;singy  p
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The deflection angle of the flow § is determined

from (2) and (3). On the basis of these equations
we obtain

tg B, = tg _ﬁ___xl____(_pz__l ,
P P k Msin? 8, cosB; \ o

or, after simple transformations,

1 X1 P2 X1 Pa -1
{g B = i A jrer
gb tgﬁl{ka(Pl 1){1 kM%(Pl 1)} }.(6)

Taking (5) into account, we obtain
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When values of My, p;, X, and the deflection angle
& are the given quantities, the problem is complicated
somewhat. For these conditions we may find the
angle of inclination g; of the shock from (6'), but this
requires much calculation. The following method is
more efficient.

Assuming a number of values of 8; > arc sin (I/M,)
the ratio p,/p, is determined from quantity x,/kM}
sin? f; and the static pressure p; using the shock dia-
gram. From (6') we determine the flow deflection
angle &, and draw the graphical relation § = f(g;).
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Fig. 1. Dependence of p,/p; on
the group B = x,/kM?sin? 8,.

The intersection of this curve with the given value of
é gives the desired shock inclination angle. The sub-
sequent calculation does not present difficulties and
is carried out in the sequence indicated above.
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We note that for each flow deflection angle there
are two solutions for angle B; and pressure ratio
P,/p;, a8 is well known in the gasdynamics of a single-
phase fluid. The regions of application of the strong
and weak solutions for an inclined shock in a two-
phase medium are evidently similar to the regions of
application of these solutions in a single-phase fluid.

Fig.2., Shock polar for moist water vapor.

To illustrate these conclusions Fig. 2 shows the
shock polar in moist water vapor with p, = 0.98 * 10°
N/m?, x, = 0.90 and M, = 1.5. We note that the region
of application of the method examined has a limit in
X,, the limit value being 1. Above this limit there is
no single-valued relation between pressure and tem-
perature behind the shock. We shall establish this
limit.

With x, = 1, equations (1) and (2) give

P _Mising, __.3.‘1__(& _ 1) (7
kM;sinf, D ’

= Ml Sin g‘ -
P2 X1

whence we obtain

)/ I 5]

The energy equation with x, = 1 gives

r(t—x) = X0 —i“—("—*—l)x
! 2 Mgsinp, \ ;

. Xy P2
< | 2M; sinfy = ————| == —11|.
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Taking (7) into account, we obtain

r{l—x)= -R?T‘—(—pi — l)(xg +—EL).

15 Dy

After simple transformations we have
'(pz/pl)z -— 2(f/RT1 —_ 1/2) (l —_ xl) pypl — l/x, = (.

The solution of this equation will be

po/py = (r/RTy — 1/2)(1 — ;) +

+ V{r/RTy — /2P (1 — x1f* + V. (8

Thus the value of M, sin g, at which the shock pro-
cess ends on the upper boundary curve, will be ex-
pressed as

2
M?sin’al={%[( = ———;—)(1~—xl>—1+ ()
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The results of the calculations are shown in Fig. 3

From (6), for the given parameters p1', Xy, and M,,
we can calculate the flow deflection angle at which
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Fig. 3. Determination of boundary values of
the quantity M;sing,: 1) for p; = 10° N/m?;
2) 10%; 3) 5+ 104

the vapor is dry and saturated behind the shock. For
this purpose, we determine the quantity M, sin
from the last relation, which allows us fo determine
the angle B, while the pressure ratio p,/p; is de-
termined from (8). It is evident that if § < 6y, the
shock process ends in the region of moist vapor. An-
alogously, if M;sin gy < (M;sin )y, the process also
proceeds without intersecting the upper boundary
curve.

If M;sinB; > (M;sin gy)p,, the vapor is superheated
in the end state (behind the shock). There is then no
single-valued relation between p, and T,.

Assuming that for superheated and saturated vapor
the value of the enthalpy is determined as [1]

Ai=c,AT
we obtain from the energy equation

Tg "—"Tl—-(l»—xl)i +

cP

1 kRT,
2 ¢

(Misin? B, — M3sin? Bs). (10)
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For the case examined the equations of continuity
and momentum give

= Mysinp; — xlﬁ(ﬁi — 1) (11

X1 Ty P EM;sinB, \ p

Substituting T, from (10) into this equation, and
bearing in mind that, according to the momentum
equation

M? sin® By — M3 sinpy = —& (_’”—— 1) X

RM;sinf, \ gy

. X P2
9M,sinp; — ———— [ 22 — l) ,
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The solution of this equation for p,/p, will be

Py k[ MisSnE —1)+
1 k+1 X

+] (e (e )

+2

1

’—x‘—kz—( U 1) Mfsinzﬂl] e (12)
A4 B+ T

The minus sign in front of the radical corresponds
to the unreal case of decrease of pressure in the
shock, and so we shall not examine that solution. In
the case when x, = 1, we can at once obtain the known
relation for the usual adiabatic shock

P _ __Q_k__ 2ap
-—pl— P 1(Mlsm pr— 1D+ 1.
The subsequent calculation does not present any
difficulty. From (11), (6), (2), (3) we may successively
determine T,, the flow deflection angle 6; M,sing,;

M,cos3,, and finally 8, = By—6.

When the state of the flow behind the shock corre-
sponds to superheated vapor, and the quantities as-
signed for the calculation are Mj, py, X; and the flow
deflection angle &, the shock is calculated in the fol-
lowing sequence.
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From the formula
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EMER 41 *

+[( k )2( M3 sin?f, _1)2+
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obtained on the basis of (6) and (11), we may deter-
mine the angle By. For this we construct the relation
6 = f(By) with the given values Mj, py, X;, and deter-
mine the angle g; from the point of intersection of
this curve with the given value of 6. The subsequent
calculation is carried out in the order indicated for
the case when the calculation was done from given
values of py, x4, My and ;.

We note that for moist vapor, and also for gas,
there is some limit value of the deflection angle,
Omax- In contrast with the gas case, the maximum
deflection angle depends not only on the number M,
but also on the static pressure p,, and on the initial
degree of dryness of the stream, x,. This applies
equally to shock processes ending in the moist vapor
region, and to shock waves leaving the flow in the
superheated vapor region. Thus, in the case of moist
vapor, both the strong and the weak solutions of the
shock polar are realized. This means that in a moist
vapor both regular and Mach reflection of shocks are
possible. In other words, all the characteristics of
oblique shocks in a moist vapor remain qualitatively
the same as for a gas, but the quantitative relations
prove to be different.
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Thus, the method of calculation of oblique shocks
is as follows.

In the case when the given quantities are the static
pressure py, X;, number M;, and angle 3y, we first
determine from (9) the value of (Mysinf), corre-
sponding to the state of dry saturated vapor behind
the shock. If M;sinpg; > (Mysinpy)y,, the shock is cal-
culated according to the variant when the shock
process ends in the superheated vapor region. If
M,sing; < (M;sinp,)y,, the calculation is made accord-
ing to the variant when the flow of vapor behind the
shock is moist.

In the case when the given quantities are static
pressure py, Xy, number My, and flow deflection
angle &, it is necessary to determine the value of
(Mysingly, from (9), and then the quantity 6y, from
6").

If § > &y, the calculation is based on the variant
when the shock process ends in the superheated vapor
region. If 6 < &y, the calculation is based on the
variant when the state behind the shock corresponds
to moist vapor.

In conclusion we note that the equations for calcu-
lating normal shocks in moist vapor may easily be
obtained as the special case with 8, = 7/2.

NOTATION

p—static pressure; c—stream velocity; T—tem-
perature; R—gas constant; x{ and x,—dryness levels
before and after shock; k—isentropic exponent; B,
and B,—angles between stream direction and shock
front; 6—flow deflection angle at shock; r—latent
heat of vaporization; c_—isobaric heat capacity.
Subscripts: 1 refers to the state of the flow ahead of
the shock, and 2 to the flow behind it.
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